Profile
Dr Sarah Chadburn
Publications
Copyright Notice: Any articles made available for download are for personal use only. Any other use requires prior permission of the author and the copyright holder.
Copyright Notice: Any articles made available for download are for personal use only. Any other use requires prior permission of the author and the copyright holder.
| 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2012 | 2010 |
2023
- Frieler K, Volkholz J, Lange S, Schewe J, Mengel M, del Rocío Rivas López M, Otto C, Reyer CPO, Karger DN, Malle JT. (2023) Scenario set-up and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Model Intercomparison Project (ISIMIP3a), volume 2023, pages 1-83, DOI:10.5194/egusphere-2023-281.
2022
- Gao Y, Burke EJ, Chadburn SE, Raivonen M, Aurela M, Flanagan LB, Fortuniak K, Humphreys E, Lohila A, Li T. (2022) Multi-site evaluation of modelled methane emissions over northern wetlands by the JULES land surface model coupled with the HIMMELI peatland methane emission model, volume 2022, pages 1-31, DOI:10.5194/bg-2022-229.
- Varney RM, Chadburn SE, Burke EJ, Cox PM. (2022) Evaluation of soil carbon simulation in CMIP6 Earth system models, Biogeosciences, volume 19, no. 19, pages 4671-4704, DOI:10.5194/bg-19-4671-2022.
- Marthews TR, Lange H, la Torre AM-D, Ellis RJ, Chadburn SE, De Kauwe MG. (2022) Climate and land surface models: Role of soil☆, Reference Module in Earth Systems and Environmental Sciences, DOI:10.1016/b978-0-12-822974-3.00087-2.
- Nakhavali MA, Mercado LM, Hartley IP, Sitch S, Cunha FV, di Ponzio R, Lugli LF, Quesada CA, Andersen KM, Chadburn SE. (2022) Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP), Geoscientific Model Development, volume 15, no. 13, pages 5241-5269, DOI:10.5194/gmd-15-5241-2022.
- Burke E, Chadburn S, Huntingford C. (2022) Thawing Permafrost as a Nitrogen Fertiliser: Implications for Climate Feedbacks, Nitrogen, volume 3, no. 2, pages 353-375, DOI:10.3390/nitrogen3020023.
- Vitali R, Chadburn SE, Keuper F, Harper AB, Burke EJ. (2022) Simulating Increased Permafrost Peatland Plant Productivity in Response to Belowground Fertilisation Using the JULES Land Surface Model, Nitrogen, volume 3, no. 2, pages 260-283, DOI:10.3390/nitrogen3020018.
- Smith ND, Burke EJ, Aas KS, Althuizen IHJ, Boike J, Christiansen CT, Etzelmuller B, Friborg T, Lee H, Rumbold H. (2022) Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography), GEOSCIENTIFIC MODEL DEVELOPMENT, volume 15, no. 9, pages 3603-3639, DOI:10.5194/gmd-15-3603-2022. [PDF]
- Chadburn SE, Burke EJ, Gallego-Sala AV, Smith ND, Bret-Harte MS, Charman DJ, Drewer J, Edgar CW, Euskirchen ES, Fortuniak K. (2022) A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands, Geoscientific Model Development, volume 15, no. 4, pages 1633-1657, DOI:10.5194/gmd-15-1633-2022.
2021
- Nakhavali MA, Mercado L, Hartley IP, Sitch S, Cunha FV, Ponzio RD, Lugli LF, Quesada CA, Andersen KM, Chadburn SE. (2021) Representation of phosphorus cycle in Joint UK Land Environment Simulator (vn5.5_JULES-CNP), Geoscientific Model Development Discussions, DOI:10.5194/gmd-2021-403.
- Smith ND, Chadburn SE, Burke EJ, Aas KS, Althuizen IHJ, Boike J, Christiansen CT, Etzelmüller B, Friborg T, Lee H. (2021) Explicitly modelling microtopography in permafrost landscapes in a land-surface model (JULES vn5.4_microtopography), volume 2021, pages 1-43, DOI:10.5194/gmd-2021-285.
- Hartley IP, Hill TC, Chadburn SE, Hugelius G. (2021) Temperature effects on carbon storage are controlled by soil stabilisation capacities, Nature Communications, volume 12, no. 1, DOI:10.1038/s41467-021-27101-1.
- von Deimling TS, Lee H, Ingeman-Nielsen T, Westermann S, Romanovsky V, Lamoureux S, Walker DA, Chadburn S, Trochim E, Cai L. (2021) Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales, The Cryosphere, volume 15, no. 5, pages 2451-2471, DOI:10.5194/tc-15-2451-2021.
- Boike J, Chadburn S, Martin J, Zwieback S, Althuizen IHJ, Anselm N, Cai L, Coulombe S, Lee H, Liljedahl AK. (2021) Standardized monitoring of permafrost thaw: a user-friendly, multiparameter protocol1, Arctic Science, volume 8, no. 1, pages 153-182, DOI:10.1139/as-2021-0007.
- Hayman GD, Comyn-Platt E, Huntingford C, Harper AB, Powell T, Cox PM, Collins W, Webber C, Lowe J, Sitch S. (2021) Regional variation in the effectiveness of methane-based and land-based climate mitigation options, EARTH SYSTEM DYNAMICS, volume 12, no. 2, pages 513-544, DOI:10.5194/esd-12-513-2021. [PDF]
- Wiltshire AJ, Burke EJ, Chadburn SE, Jones CD, Cox PM, Davies-Barnard T, Friedlingstein P, Harper AB, Liddicoat S, Sitch S. (2021) Jules-cn: A coupled terrestrial carbon-nitrogen scheme (jules vn5.1), Geoscientific Model Development, volume 14, no. 4, pages 2161-2186, DOI:10.5194/gmd-14-2161-2021.
- Ritson JP, Alderson DM, Robinson CH, Burkitt AE, Heinemeyer A, Stimson AG, Gallego-Sala A, Harris A, Quillet A, Malik AA. (2021) Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning - A research agenda, Sci Total Environ, volume 759, DOI:10.1016/j.scitotenv.2020.143467. [PDF]
2020
- von Deimling TS, Lee H, Ingeman-Nielsen T, Westermann S, Romanovsky V, Lamoureux S, Walker DA, Chadburn S, Cai L, Trochim E. (2020) Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales, volume 2020, pages 1-31, DOI:10.5194/tc-2020-192.
- Nakhavali M, Lauerwald R, Regnier P, Guenet B, Chadburn S, Friedlingstein P. (2020) Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance, Glob Chang Biol, volume 27, no. 5, pages 1083-1096, DOI:10.1111/gcb.15460. [PDF]
- Chadburn SE, Aalto T, Aurela M, Baldocchi D, Biasi C, Boike J, Burke EJ, Comyn‐Platt E, Dolman AJ, Duran‐Rojas C. (2020) Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions, Global Biogeochemical Cycles, volume 34, no. 11, DOI:10.1029/2020gb006678.
- Varney RM, Chadburn SE, Friedlingstein P, Burke EJ, Koven CD, Hugelius G, Cox PM. (2020) A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming, Nature Communications, volume 11, no. 1, article no. 5544, DOI:10.1038/s41467-020-19208-8.
- Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB. (2020) Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proc Natl Acad Sci U S A, volume 117, no. 34, pages 20438-20446, DOI:10.1073/pnas.1916387117. [PDF]
- Andresen CG, Lawrence D, Wilson CJ, McGuire AD, Koven C, Schaefer K, Jafarov E, Peng S, Chen X, Gouttevin I. (2020) Soil moisture and hydrology projections of the permafrost region a model intercomparison, CRYOSPHERE, volume 14, no. 2, pages 445-459, DOI:10.5194/tc-14-445-2020. [PDF]
2019
- Andresen CG, Lawrence DM, Wilson CJ, McGuire AD, Koven C, Schaefer K, Jafarov E, Peng S, Chen X, Gouttevin I. (2019) Soil Moisture and Hydrology Projections of the Permafrost Region: A Model Intercomparison, pages 1-20, DOI:10.5194/tc-2019-144.
- Boike J, Nitzbon J, Anders K, Grigoriev M, Bolshiyanov D, Langer M, Lange S, Bornemann N, Morgenstern A, Schreiber P. (2019) A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models, Earth System Science Data, volume 11, no. 1, pages 261-299, DOI:10.5194/essd-11-261-2019.
- Lee H, Ekici A, Tjiputra J, Muri H, Chadburn SE, Lawrence DM, Schwinger J. (2019) The Response of Permafrost and High‐Latitude Ecosystems Under Large‐Scale Stratospheric Aerosol Injection and Its Termination, Earth's Future, volume 7, no. 6, pages 605-614, DOI:10.1029/2018ef001146.
- Vereecken H, Weihermüller L, Assouline S, Šimůnek J, Verhoef A, Herbst M, Archer N, Mohanty B, Montzka C, Vanderborght J. (2019) Infiltration from the pedon to global grid scales: An overview and outlook for land surface modeling, Vadose Zone Journal, volume 18, no. 1, DOI:10.2136/vzj2018.10.0191.
2018
- Boike J, Nitzbon J, Anders K, Grigoriev M, Bolshiyanov D, Langer M, Lange S, Bornemann N, Morgenstern A, Schreiber P. (2018) A 16-year record (2002–2017) of permafrost, active layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River Delta, northern Siberia: an opportunity to validate remote sensing data and land surface, snow, and permafrost models, pages 1-77, DOI:10.5194/essd-2018-82.
- Fisher JB, Hayes DJ, Schwalm CR, Huntzinger DN, Stofferahn E, Schaefer K, Luo Y, Wullschleger SD, Goetz S, Miller CE. (2018) Missing pieces to modeling the Arctic-Boreal puzzle, Environmental Research Letters, volume 13, no. 2, DOI:10.1088/1748-9326/aa9d9a.
- Boike J, Juszak I, Lange S, Chadburn S, Burke E, Overduin PP, Roth K, Ippisch O, Bornemann N, Stern L. (2018) A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen), Earth System Science Data, volume 10, no. 1, pages 355-390, DOI:10.5194/essd-10-355-2018.
- Comyn-Platt E, Hayman G, Huntingford C, Chadburn SE, Burke EJ, Harper AB, Collins WJ, Webber CP, Powell T, Cox PM. (2018) Erratum to: Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks (Nature Geoscience, (2018), 11, 8, (568-573), 10.1038/s41561-018-0174-9), Nature Geoscience, volume 11, no. 11, pages 882-886, DOI:10.1038/s41561-018-0247-9.
- Burke EJ, Chadburn SE, Huntingford C, Jones CD. (2018) CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 degrees C, ENVIRONMENTAL RESEARCH LETTERS, volume 13, no. 2, article no. ARTN 024024, DOI:10.1088/1748-9326/aaa138. [PDF]
- Harper AB, Powell T, Cox PM, House J, Huntingford C, Lenton TM, Sitch S, Burke E, Chadburn SE, Collins WJ. (2018) Land-use emissions play a critical role in land-based mitigation for Paris climate targets, Nat Commun, volume 9, no. 1, DOI:10.1038/s41467-018-05340-z. [PDF]
- Comyn-Platt E, Hayman G, Huntingford C, Chadburn SE, Burke EJ, Harper AB, Collins WJ, Webber CP, Powell T, Cox PM. (2018) Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks, Nature Geoscience, pages 1-6, DOI:10.1038/s41561-018-0174-9.
- Collins WJ, Webber CP, Cox PM, Huntingford C, Lowe J, Sitch S, Chadburn SE, Comyn-Platt E, Harper AB, Hayman G. (2018) Increased importance of methane reduction for a 1.5 degree target, ENVIRONMENTAL RESEARCH LETTERS, volume 13, no. 5, article no. ARTN 054003, DOI:10.1088/1748-9326/aab89c. [PDF]
- Nakhavali M, Friedlingstein P, Lauerwald R, Tang J, Chadburn S, Camino-Serrano M, Guenet B, Harper A, Walmsley D, Peichl M. (2018) Representation of dissolved organic carbon in the JULES land surface model (vn4.4-JULES-DOCM), Geoscientific Model Development, volume 11, no. 2, pages 593-609, DOI:10.5194/gmd-11-593-2018.
2017
- Chadburn S, Krinner G, Porada P, Bartsch A, Beer C, Marchesini LB, Boike J, Elberling B, Friborg T, Hugelius G. (2017) Carbon stocks and fluxes in the high latitudes: Using site-level data to evaluate Earth system models, pages 1-41, DOI:10.5194/bg-2017-197.
- Boike J, Juszak I, Lange S, Chadburn S, Burke E, Overduin PP, Roth K, Ippisch O, Bornemann N, Stern L. (2017) A 20-year record (1998–2017) of permafrost, active layer, and meteorological conditions at a High Arctic permafrost research site (Bayelva, Spitsbergen): an opportunity to validate remote sensing data and land surface, snow, and permafrost models, pages 1-86, DOI:10.5194/essd-2017-100.
- Burke EJ, Chadburn SE, Ekici A. (2017) A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions, GEOSCIENTIFIC MODEL DEVELOPMENT, volume 10, no. 2, pages 959-975, DOI:10.5194/gmd-10-959-2017. [PDF]
- Chadburn SE, Krinner G, Porada P, Bartsch A, Beer C, Marchesini LB, Boike J, Ekici A, Elberling B, Friborg T. (2017) Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models, BIOGEOSCIENCES, volume 14, no. 22, pages 5143-5169, DOI:10.5194/bg-14-5143-2017. [PDF]
- Burke EJ, Ekici A, Huang Y, Chadburn SE, Huntingford C, Ciais P, Friedlingstein P, Peng S, Krinner G. (2017) Quantifying uncertainties of permafrost carbon-climate feedbacks, BIOGEOSCIENCES, volume 14, no. 12, pages 3051-3066, DOI:10.5194/bg-14-3051-2017. [PDF]
- Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, Westermann S. (2017) An observation-based constraint on permafrost loss as a function of global warming, Nature Climate Change, volume 7, no. 5, pages 340-344, DOI:10.1038/nclimate3262.
2016
- Burke EJ, Chadburn SE, Ekici A. (2016) A vertical representation of soil carbon in the JULES land surface scheme with a focus on permafrost regions, pages 1-30, DOI:10.5194/gmd-2016-235.
2015
- Chadburn SE, Burke EJ, Essery RLH, Boike J, Langer M, Heikenfeld M, Cox PM, Friedlingstein P. (2015) Impact of model developments on present and future simulations of permafrost in a global land-surface model, Cryosphere, volume 9, no. 4, pages 1505-1521, DOI:10.5194/tc-9-1505-2015.
- Ekici A, Chadburn S, Chaudhary N, Hajdu LH, Marmy A, Peng S, Boike J, Burke E, Friend AD, Hauck C. (2015) Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes, Cryosphere, volume 9, no. 4, pages 1343-1361, DOI:10.5194/tc-9-1343-2015.
- Chadburn S, Burke E, Essery R, Boike J, Langer M, Heikenfeld M, Cox P, Friedlingstein P. (2015) An improved representation of physical permafrost dynamics in the JULES land-surface model, Geoscientific Model Development, volume 8, no. 5, pages 1493-1508, DOI:10.5194/gmd-8-1493-2015.
2014
- Ekici A, Chadburn S, Chaudhary N, Hajdu LH, Marmy A, Peng S, Boike J, Burke E, Friend AD, Hauck C. (2014) Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes, volume 8, no. 5, pages 4959-5013, DOI:10.5194/tcd-8-4959-2014.
- Chadburn S, Gregory R. (2014) Time dependent black holes and scalar hair, Classical and Quantum Gravity, volume 31, no. 19, DOI:10.1088/0264-9381/31/19/195006.
2012
- Avgoustidis A, Chadburn S, Gregory R. (2012) Cosmic superstring trajectories in warped compactifications, Physical Review D, volume 86, no. 6, DOI:10.1103/physrevd.86.063516.
- Avgoustidis A, Chadburn S, Gregory R. (2012) Cosmic superstring trajectories in warped compactifications, DOI:10.48550/arxiv.1204.0973.
2010
- O’Callaghan E, Chadburn S, Geshnizjani G, Gregory R, Zavala I. (2010) Effect of Extra Dimensions on Gravitational Waves from Cosmic Strings, Physical Review Letters, volume 105, no. 8, DOI:10.1103/physrevlett.105.081602.
- O'Callaghan E, Chadburn S, Geshnizjani G, Gregory R, Zavala I. (2010) The effect of extra dimensions on gravity wave bursts from cosmic string cusps, Journal of Cosmology and Astroparticle Physics, volume 2010, no. 09, pages 013-013, DOI:10.1088/1475-7516/2010/09/013.
- O'Callaghan E, Chadburn S, Geshnizjani G, Gregory R, Zavala I. (2010) Effect of extra dimensions on gravitational waves from cosmic strings, DOI:10.48550/arxiv.1003.4395.
- O'Callaghan E, Chadburn S, Geshnizjani G, Gregory R, Zavala I. (2010) The effect of extra dimensions on gravity wave bursts from cosmic string cusps, DOI:10.48550/arxiv.1005.3220.
Showing 54 publications from Symplectic.